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Jan L Cieśliński and Tomasz Nikiciuk

Uniwersytet w Białymstoku, Wydział Fizyki, ul. Lipowa 41, 15-424 Białystok, Poland

E-mail: janek@alpha.uwb.edu.pl and niki@alpha.uwb.edu.pl

Received 18 December 2009, in final form 11 March 2010
Published 14 April 2010
Online at stacks.iop.org/JPhysA/43/175205

Abstract
We present a direct approach to the construction of Lagrangians for a large class
of one-dimensional dynamical systems with a simple dependence (monomial or
polynomial) on the velocity. We rederive and generalize some recent results and
find Lagrangian formulations which seem to be new. Some of the considered
systems (e.g. motions with the friction proportional to the velocity and to the
square of the velocity) admit infinite families of different explicit Lagrangian
formulations.

PACS numbers: 45.20.-d, 45.20.Jj, 02.30.Hq, 45.30.+s

1. Introduction

In recent papers [1, 2] the problem of finding the Lagrangian description for a large class of
one-dimensional dissipative (or dissipative-looking) systems was discussed. The discussion
was far from being exhaustive. In this paper we present a different, more direct, approach to the
problem of the construction of Lagrangians for dissipative (or dissipative-looking) systems.
We simply assume some general form of the Lagrangian and then check the resulting Euler–
Lagrange equations. As a result we get large families of equations admitting Lagrangian
formulations. Most of these equations can be interpreted as damped, dissipative or, at least,
dissipative-like systems.

The inverse problem of Lagrangian mechanics is concerned with the question of whether
a given system of second-order ordinary differential equations q̈i = f i(t, q, q̇) can be derived
from a variational principle [3]. In other words, one tries to find a Lagrangian for this system.
This problem was studied in 19th century by Helmholtz (see [4]) and by Darboux who proved
that in the one-dimensional case the Lagrangian always exists [5]. The inverse problem in the
two-dimensional case was solved by Douglas [6], while the general case has been completed
recently [7], see also [8].
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In the one-dimensional case the Lagrangian description is highly non-unique (although it
is not easy to obtain corresponding Lagrangians explicitly). The problem reduces to finding
the so-called Jacobi last multiplier by solving an appropriate partial differential equation of
the first order. These classical results have been reconsidered recently by Nucci and Leach
[9–11].

Dissipative systems were long believed to be ‘beyond variational treatment’ [12], which
is to some extent true if we insist on the physical interpretation of the Hamiltonian and
canonical momenta, compare [13]. However, by relaxing these requirements one can obtain
the variational interpretation of numerous dissipative system [14–17].

In this paper we focus on more elementary issues, namely on providing explicit Lagrangian
description for a large class of one-dimensional differential equations of second order with a
simple (e.g. polynomial) dependence on the velocity ẋ.

2. Standard Lagrangians

Standard Lagrangians (known also as ‘natural’ or ‘of mechanical type’) are quadratic forms
with respect to ẋ (the dot denotes the differentiation with respect to t). In the one-dimensional
case we can easily obtain all equations of motions corresponding to standard Lagrangians. We
assume

L = 1
2P(x, t)ẋ2 + Q(x, t)ẋ + R(x, t). (1)

The Euler–Lagrange equations yield

ẍ +
Px

2P
ẋ2 +

Pt

P
ẋ +

Qt − Rx

P
= 0, (2)

where subscripts x, t denote partial derivatives. As a consequence we immediately obtain the
following proposition.

Proposition 2.1. The equation of motion

ẍ + a(x, t)ẋ2 + b(x, t)ẋ + c(x, t) = 0 (3)

admits a Lagrangian description with a standard Lagrangian (1) iff

bx = 2at . (4)

Then P = exp(2
∫ x

a
(
ξ, t) dξ

)
and

R =
∫ x

(Qt(ξ, t) − c(ξ, t)P (ξ, t)) dξ, (5)

where Q = Q(x, t) is an arbitrary function.

We remark that exactly the same class of equations was studied by Euler and Jacobi (see
[18] and references quoted therein).

Corollary 2.2. Special cases of proposition 2.1:

(1) P = P(t) and Q ≡ 0:

ẍ + b(t)ẋ + c(x, t) = 0 �⇒ L =
(

1

2
ẋ2 −

∫ x

c(ξ, t) dξ

)
e
∫ t

b(τ ) dτ .

This is a generalization of proposition 1 from [2]. In the case of linear equations (i.e.
c = xc̃(t)) we have

L = (
1
2 ẋ2 − 1

2 c̃(t)x2
)

e
∫ t

b(τ ) dτ . (6)

2
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In particular, we rederive the well-known result [19, 20] for the damped harmonic
oscillator:

ẍ + γ ẋ + ω2
0x = 0 �⇒ L = 1

2 eγ t
(
ẋ2 − ω2

0x
2
)
.

(2) P = P(x) and R ≡ 0:

ẍ + a(x)ẋ2 + c(x, t) = 0 �⇒ L =
(

1

2
ẋ2 + ẋ

∫ t

c(x, τ ) dτ

)
e2

∫ x
a(ξ) dξ .

This formula simplifies for c = c(x) (the case considered in [1, 2]). Then

L = (
1
2 ẋ2 + t ẋc(x)

)
e2

∫ x
a(ξ) dξ . (7)

(3) P = P(x) and Q ≡ 0:

ẍ + a(x)ẋ2 + c(x, t) = 0 �⇒ L = 1

2
ẋ2 e2

∫ x
a(ξ) dξ −

∫ x

c(ξ, t) e2
∫ ξ

a(y) dy dξ.

This is a generalization of the main result of [1] and proposition 3 from [2], where
c = c(x). Thus, these results are extended on the t-dependent function c = c(x, t).

(4) P = A(x)B(t):

ẍ + a(x)ẋ2 + b(t)ẋ + c(x, t) = 0 �⇒ L is given by (1), where

P = AB, A = exp(2
∫ x

a(ξ) dξ), B = exp(
∫ t

b(τ ) dτ), R is given by (5) and Q is
arbitrary.

Example 2.3 (A particle accreting mass in a potential field). We proceed to physical
aspects of the equation

ẍ + b(t)ẋ + c(x, t) = 0. (8)

Following [21], where the damped harmonic oscillator is interpreted as harmonic oscillator
with time-dependent mass, we define

m(t) = e
∫ t

b(τ ) dτ , i.e. b(t) = ṁ

m
. (9)

Then,

L = 1

2
m(t)ẋ2 − m(t)V (x, t), H = p2

2m(t)
+ m(t)V (x, t), (10)

where V (x, t) = ∫ x
c(ξ, t) dξ . Therefore, equation (8) can be considered either as a dissipative

system or a particle with a prescribed mass time dependence in an arbitrary potential (possibly
time dependent).

The next two physical examples were presented in [2]. We show that our direct approach
works also in these cases. The obtained Lagrangians have a simpler form than Lagrangians
found in [2].

Example 2.4 (Pendulum with increasing length). The equation of motion for the simple
(nonlinear) pendulum with linearly increasing length is given by (compare [2])

θ̈ +
2aθ̇

l0 + at
+

g sin θ

l0 + at
= 0, (11)

where l0, a and g are constant. Using corollary 2.2 (case (1)) we get

L = 1
2 (l0 + at)2θ̇2 + (l0 + at)g cos θ. (12)

3
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This Lagrangian is very natural and has a straightforward physical motivation (the constant
length is replaced by a variable length). The increasing length effectively acts as a damping,
see the second term in (11). We point out that the Lagrangian obtained by Musielak (see [2],
formula (20)) is more complicated, although equivalent to (12).

Example 2.5 (Lane–Emden equation). A self-graviting spherically symmetric object (a
star) composed of a fluid with the polytropic index κ is described by the Lane–Emden equation
[22]:

d2ψ

dξ 2
+

2

ξ

dψ

dξ
+ ψκ = 0, (13)

where ξ, ψ are related, respectively, to the radius and density of the star. Using corollary 2.2
(case (1)) we obtain

L = 1

2
ξ 2

(
dψ

dξ

)2

− ψκ+1ξ 2

κ + 1
, (14)

compare [2], formula (22), where an equivalent (but more complicated) form of L was found.

All systems described by the standard Lagrangian (1) have also the Hamiltonian
description. Indeed, computing generalized momentum

p = P ẋ + Q, ẋ = p − Q

P
, (15)

we easily get the standard Hamiltonian H = pẋ − L:

H(x, p, t) = (p − Q(x, t))2

2P(x, t)
− R(x, t). (16)

In general, these Hamiltonians are t dependent, i.e. they are not the integrals of motion. The
integrable cases are obtained for P,Q and R depending only on x (and in such case we can
assume, without loss of the generality, Q = 0).

Corollary 2.6. The equation ẍ +a(x)ẋ2 +c(x) = 0 has the standard Lagrangian formulation
for any a, c. The corresponding Hamiltonian,

H = 1

2
p2 exp

(
−2

∫ x

a(ξ) dξ

)
+

∫ x

c(ξ) exp

(
2
∫ ξ

a(y) dy

)
dξ, (17)

is an integral of motion.

3. Reciprocal Lagrangians

Reciprocal Lagrangians (i.e. inverses of standard-like Lagrangians) were introduced and
studied recently [2, 23, 24]. If

L = 1

L
, L = L(x, ẋ, t)), (18)

then

ẍ =
2ẋ

∂L

∂ẋ

∂L

∂x
− ẋL

∂2L

∂ẋ∂x
+ 2

∂L

∂t

∂L

∂ẋ
− L

∂2L

∂t∂ẋ
+ L

∂L

∂x

L
∂2L

∂ẋ2
− 2

(
∂L

∂ẋ

)2 . (19)

4
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We confine ourselves to L of the form

L = 1

L
, L = F(x, t)ẋν + G(x, t). (20)

Substituting (20) into (19) we obtain

ẍ = pẋ2ν + qẋ2ν−1 + rẋν + sẋν−1 + w

gẋν−2 − hẋ2ν−2
, (21)

where

p := (1 + ν)FFx, q := νFFt , r := (1 + 2ν)FGx + (1 − ν)FxG,

s := 2νGtF − νGFt , w := GGx, g := ν(ν − 1)FG, h := ν(ν + 1)F 2.

3.1. Linear case

We first consider the case linear in ẋ, i.e. ν = 1. The case ν = 1, F = 1 is considered in [23],
with a special stress on G quadratic in x (leading to second-order Riccati equations), see also
[25] for a general discussion of this case.

In the case ν = 1 equation (21) reduces to a special case of (3):

ẍ = −Fx

F
ẋ2 − (Ft + 3Gx)

2F
ẋ − (2GtF − GFt + GGx)

2F 2
. (22)

First, we confine ourselves to t-independent F and G. Then, the coefficients a, b and c by
powers of ẋ depends on x only. They are not independent. Indeed,

a = F ′

F
, b = 3G′

2F
, c = GG′

2F 2
, (23)

where the prime denotes the differentiation with respect to x. Hence, substituting G = 3cF/b

and F ′ = aF to the last equation of (23), we get a constraint on a, b and c, see (25).

Proposition 3.1. The equation

ẍ + a(x)ẋ2 + b(x)ẋ + c(x) = 0 (24)

admits a Lagrangian description with L = (ẋF (x) + G(x))−1 iff

c,x +

(
a − b,x

b

)
c = 2

9
b2. (25)

Then, F(x) = exp(
∫ x

a(ξ) dξ) and G(x) = 3c(x)F (x)/b(x).

Therefore, we can choose arbitrary functions a(x), b(x) and then c have to satisfy equation
(25). Solving this equation we get

c(x) = 2

9
b(x)

∫ x

b(ξ) exp

(∫ ξ

x

a(y) dy

)
dξ. (26)

Another (more general) Hamiltonian formulation for equation (24) was found in [27]
by the Prelle–Singer method, compare also [39]. The case a = 0 corresponds to a class of
modified Emden-type equations.

Example 3.2 (Liénard-type nonlinear oscillator). Taking a = 0 and b(x) = kx (k = const)
we obtain

c(x) = 2

9
kx

(
1

2
kx2 + λ

)
= k2x3

9
+ λ1x, (27)

5
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where λ = const and λ1 := 2
9kλ. This case corresponds exactly to a Liénard-type nonlinear

oscillator which shows very unusual properties, like isochronous oscillations for λ1 > 0 [24].
In this case the Lagrangian is given by

L = 1

ẋ + 1
3kx2 + 2

3λ
, (28)

compare [2, 24].

Another possibility is to choose the arbitrary functions b(x), c(x) and then a(x) is given
by

a = b,x

b
− c,x

c
+

2b2

9c
. (29)

Proposition 3.1 generalizes propositions 4 and 5 from [2] (and coincides with proposition 2
from [25]).

The case ν = 1 contains other interesting subcases.

Example 3.3. Taking F(t) = f0e2kt and G(t) = g0ekt we reduce (22) to ẍ + kẋ = 0.

A next case is obtained by the assumption F = f (t), G = xg(t). Then, equation (22)
reduces to the linear equation:

ẍ + b(t)ẋ + c(t)x = 0, (30)

where

b = ḟ + 3g

2f
, c = 2f ġ − gḟ + g2

2f 2
. (31)

The system (31) expresses b, c in terms of f, g. These equations cannot be inverted explicitly
(we correct here a mistake made in our preprint [26]). Given b, c we may try to compute
corresponding f, g. Substituting g = 2

3f b − 1
3 ḟ into the second equation we obtain a Riccati

equation, see [25] (proposition 1). Therefore, we have a reciprocal Lagrangian for (30) but in
an implicit form (the Lagrangian is expressed in terms of a solution of the Riccati equation)
[25]. In section 3.3 we extend this result obtaining a one-parameter family of non-standard
Lagrangians.

3.2. Quadratic case

In the case ν = 2 the Lagrangian (20) yields more complicated equation:

ẍ = 3FFxẋ
4 + 2FFt ẋ

3 + (5FGx − FxG)ẋ2 + (4GtF − 2GFt)ẋ + GGx

2F(G − 3F ẋ2)
. (32)

In the particular case G = 0 we get

ẍ +
Fx

2F
ẋ2 +

Ft

3F
ẋ = 0, (33)

which yields the following proposition.

Proposition 3.4. The equation

ẍ + a(x, t)ẋ2 + b(x, t)ẋ = 0 (34)

admits a Lagrangian description with the Lagrangian proportional to ẋ−2 iff 3bx = 2at .
Then, L = (

ẋ exp
∫ x

a(ξ, t) dξ
)−2

.

6
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Another interesting particular case is given by G = G(t), F = f (x)G3. We obtain

ẍ = − f ′

2f
ẋ2 − Ġ

G
ẋ, (35)

which is a particular case of (34).

Proposition 3.5. The equation

ẍ + a(x)ẋ2 + b(t)ẋ = 0 (36)

admits a Lagrangian description with a Lagrangian given by L = (F ẋ2 + G)−1, where
G(t) = exp

( ∫ t
b(τ ) dτ

)
, F(x, t) = exp

(
3
∫ t

b(τ ) dτ + 2
∫ x

a(ξ) dξ
)
.

Therefore, equation (36) admits at least three different explicit Lagrangian descriptions:
standard one (compare case 4 of corollary 2.2) and two reciprocal.

Example 3.6 (Buchdahl equation). A particular example of class (36) is the Buchdahl
equation of the general relativity, compare [27, 28],

ẍ = 3ẋ2

x
+

ẋ

t
, (37)

which corresponds to a = −3/x, b = −1/t . Then, propositions 3.4 and 3.5 give the following
Lagrangians:

L1 = k1ẋ
−2t3x6, L2 = 1

k1(k2ẋ2x6t3 + t)
, (38)

where k1, k2 are constant. We remark that (37) can be rewritten as

d

dt

(
1

t

d

dt

(
1

x2

))
= 0,

which yields the general solution in the form c1x
2t2 + c2x

2 = 1.

3.3. A generalization of the reciprocal case

After completing the first version of this work [26] we realized that practically all results
of section 3.1 have been obtained earlier by Musielak [25]. In this section we improve and
generalize some of these results. We consider the following generalization of reciprocal
Lagrangians:

L = 1

Lm
, L = L(x, ẋ, t)), (39)

where m is a real constant (compare [29] where this ansatz is applied in a particular case).
Then Euler–Lagrange equations read

ẍ =
(m + 1)

(
ẋ

∂L

∂ẋ

∂L

∂x
+

∂L

∂t

∂L

∂ẋ

)
− ẋL

∂2L

∂ẋ∂x
− L

∂2L

∂t∂ẋ
+ L

∂L

∂x

L
∂2L

∂ẋ2
− (m + 1)

(
∂L

∂ẋ

)2 . (40)

We confine ourselves to L linear in ẋ considering two interesting subcases. First, we
assume t-independent L, i.e.

L = 1

Lm
, L = F(x)ẋ + G(x). (41)

7
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The Euler–Lagrange equations read

ẍ +
F ′

F
ẋ2 +

(m + 2)G′

(m + 1)F
ẋ +

GG′

(m + 1)F 2
= 0, (42)

and we easily obtain an analogue of proposition 3.1.

Proposition 3.7. The equation ẍ + a(x)ẋ2 + b(x)ẋ + c(x) = 0 admits the Lagrangian
description with L = (ẋF (x) + G(x))−m iff

c,x +

(
a − b,x

b

)
c = (m + 1)

(m + 2)2
b2. (43)

Then, F(x) = exp
( ∫ x

a(ξ) dξ
)

and G(x) = (m + 2)c(x)F (x)/b(x).

In order to obtain another proposition, we consider L linear both in ẋ and x,

L = 1

Lm
, L = f (t)ẋ + g(t)x. (44)

Substituting (44) into (40) we obtain

ẍ +
mḟ + (m + 2)g

(m + 1)f
ẋ +

(m + 1)f ġ − gḟ + g2

(m + 1)f 2
x = 0. (45)

We identify this equation with (30),

b = mḟ + (m + 2)g

(m + 1)f
, c = (m + 1)f ġ − gḟ + g2

(m + 1)f 2
. (46)

Similarly as at the end of section 3.1, we try to express f, g in terms of b, c. Now, we have at
our disposal the free parameter m. From the first equation we compute

g = (m + 1)f b − mḟ

m + 2
, (47)

and substituting it into the second equation we get

c = (m + 1)(ub + ḃ) − m(u̇ + u2)

m + 2
+

mu2 − (m + 1)ub

(m + 1)(m + 2)
+

((m + 1)b − mu)2

(m + 1)(m + 2)2
,

where u is defined by ḟ = uf . Thus, we obtained a Riccati equation for u:

u̇ +
mu2

m + 2
− mbu

m + 2
− (m + 1)b2

m(m + 2)
− (m + 1)b

m
+

(m + 2)c

m
= 0.

In the special case m = 1 this equation coincides with equation (8) of [25].

Proposition 3.8. Equation (30) (for any b(t), c(t)) admits an explicit Lagrangian description
with the generalized reciprocal Lagrangian of the form L = (ẋf (t) + xg(t))−m. Functions
f, g can be expressed in terms of b, c by a Riccati equation.

Therefore, any equation of the form ẍ + b(t)ẋ + c(t)x = 0 (including equations of
mathematical physics, like Airy, Bessell, Hermite or Legendre equation) has an explicit
standard Lagrangian (see (6)) and one-parameter family of implicit generalized reciprocal
Langrangians. Actually, there are two generalized reciprocal Lagrangians corresponding to
two values of the parameter m.

8
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4. Lagrangians with a modified kinetic term

In this section we consider generalizations of standard Lagrangians, where the kinetic term ẋ2

is replaced by some more general expression (and the term linear in ẋ is absent).

4.1. Monomial case

First, we assume the monomial case:

L = F(x, t)ẋμ − G(x, t). (48)

The equation of motion reads

ẍ = − ẋ2F,x

μF
− ẋF,t

(μ − 1)F
− ẋ2−μG,x

μ(μ − 1)F
. (49)

Proposition 4.1. The equation of motion

ẍ + a(x, t)ẋ2 + b(x, t)ẋ + c(x, t)ẋ2−μ = 0 (μ �= 0, 1) (50)

admits a Lagrangian description with the Lagrangian (48) iff

(μ − 1)b,x = μa,t . (51)

Then, F = exp
(
μ

∫ x
a(ξ, t) dξ

)
and G = μ(μ − 1)

∫ x
c(ξ, t)F (ξ, t) dξ .

The proof follows directly by comparing (50) with (49). Another result is obtained by
assuming F = F(x) and G = G(x).

Proposition 4.2. The equation

ẍ = −a(x)ẋ2 − c(x)ẋν (ν �= 1, 2) (52)

admits for any a(x), c(x) a Lagrangian description. The Lagrangian reads

L = F(x)ẋ2−ν − G(x), (53)

where

F(x) = exp

(
(2 − ν)

∫ x

a(ξ) dξ

)
, G(x) = (2 − ν)(1 − ν)

∫ x

c(ξ)F (ξ) dξ.

Corollary 4.3. Taking c(x) = 0, a(x) = k = const and denoting n = ν − 2, we obtain (for
n �= 0)

ẍ + kẋ2 = 0 �⇒ L = Cẋn enkx.

4.2. General case

Let us consider a class of standard-like Lagrangians with quadratic kinetic terms replaced by
an arbitrary smooth function of ẋ:

L = F(x, t)ψ(ẋ) + G(x, t). (54)

The equation of motion reads

ẍ +
(Ft + ẋFx)ψ

′ − Fxψ − Gx

Fψ ′′ = 0. (55)

9
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Assuming F = F0 = const, we obtain the equation

ẍ = Gx

F0ψ ′′ , (56)

where the right-hand side is of the form f (x, t)φ(ẋ) for some functions f, φ. Indeed, it is
enough to take Gx = f F0 oraz ψ ′′ = 1/φ.

Proposition 4.4. The equation ẍ = f (x, t)R(ẋ) admits a Lagrangian description with the
Lagrangian L = 
(ẋ) + G(x, t), where


(v) :=
∫ v

dη

∫ η dξ

R(ξ)
, G(x, t) =

∫ x

f (ξ, t) dξ, (57)

(provided that the above integrals exist).

Corollary 4.5. Special cases of proposition 4.4:

(1) ẍ = ẋf (x, t) �⇒ L = ẋ ln |ẋ| +
∫ x

f (ξ, t) dξ.

(2) ẍ = ẋ2f (x, t) �⇒ L = − ln |ẋ| +
∫ x

f (ξ, t) dξ.

(3) ẍ = −k0ẋ
ν �⇒ L = ẋ2−ν

(2 − ν)(1 − ν)
− k0x (ν �= 1, 2).

(4) ẍ = f (x, t)

(
1 − ẋ2

c2

)3/2

�⇒ L = −c2

√
1 − ẋ2

c2
+

∫ x

f (ξ, t) dξ .

The last case of corollary 4.5 describes a relativistic particle in a prescribed potential field.
Indeed, the equation of motion can be obviously rewritten as

d

dt

ẋ√
1 − ẋ2

c2

= f (x, t). (58)

Example 4.6 (Relativistic particle in a dissipative medium). Applying proposition 4.4 to
the case defined by f (x, t) = 1 and R(ẋ) given by

R(ẋ) = g(ẋ)

(
1 − ẋ2

c2

)3/2

, (59)

where g(ẋ) is a prescribed function, we get the equation of motion for a relativistic particle
with a dissipation or/and damping:

d

dt

ẋ√
1 − ẋ2

c2

= g(ẋ). (60)

The corresponding Lagrangian can always be found in quadratures (but explicit formulation
is usually unknown or non-existing). A special case of equation (60) was considered in [36].
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5. Radical Lagrangians

We consider Lagrangians of the form

L = μ
√

A(x, t)ẋν + B(x, t). (61)

The Euler–Lagrange equations yield

ẍ = pẋ2ν + qẋ2ν−1 + rẋν + sẋν−1 + w

gẋ2ν−2 + hẋν−2
, (62)

where

g := (ν − μ)

(1 − μ)
A, h := μ(ν − 1)

(1 − μ)
B,

p := − (ν + μ)

ν(1 − μ)
Ax, q := − 1

(1 − μ)
At ,

r := − (ν − νμ − μ)

ν(1 − μ)
Bx − μ(ν + 1)

ν(1 − μ)

AxB

A
,

s := −Bt − μ

(1 − μ)

AtB

A
, w := μ

ν(1 − μ)

BxB

A
.

(63)

In this paper we will assume either μ = ν �= 1 or μ �= ν = 1. In those cases the
denominator simplifies and the right-hand side of (62) is a polynomial in ẋ.

5.1. The case μ = ν �= 1

In this case equation (62) reduces to

ẍ =
2Ax

B
ẋν+2 + At

B
ẋν+1 +

(
(1+ν)Ax

A
− νBx

B

)
ẋ2 +

(
(1−ν)Bt

B
+ νAt

A

)
ẋ + Bx

A
ẋ2−ν

ν(1 − ν)
. (64)

A further reduction is obtained by assuming that A = A(t), B = B(t). Then, equation (64)
becomes

ẍ = −
(

Ȧ

(ν − 1)A
− Ḃ

νB

)
ẋ − Ȧ

ν(ν − 1)B
ẋν+1. (65)

Proposition 5.1. The equation

ẍ = −a(t)ẋ − b(t)ẋν+1 (66)

admits (for ν �= 0, ν �= 1 and any functions a, b) a Lagrangian description with the Lagrangian
of the form L = ν

√
A(t)ẋν + B(t), where

A(t) =
(

ν

∫ t

b(τ ) exp

(
−ν

∫ τ

a(y) dy

)
dτ

)1−ν

,

B(t) =
(

ν

∫ t

b(τ ) exp

(
−ν

∫ τ

a(y) dy

)
dτ

)−ν

exp

(
−ν

∫ t

a(τ ) dτ

)
.

(67)

In order to proof this proposition it is enough to compare (66) with (65) and to solve
resulting differential equations.

Two interesting special cases can be obtained by requiring either b = 0 (i.e. A(t) = const)
or a = 0 (i.e. ν ln A − (ν − 1) ln B = const).
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Corollary 5.2. Special cases of proposition 5.1:

1. A = A0 = const, B = B(t):

ẍ + a(t)ẋ = 0 �⇒ L = ν

√
A0ẋν + B0 exp(−ν

∫ t

b(τ ) dτ),

where B0 = const and ν �= 0, 1.
2. B = c0A

ν
ν−1 ,

ẍ + b(t)ẋm = 0 �⇒ L = m+1
√

F−mẋm+1 + c0F−m−1,

where m �= 1, 2, F = F(t) = −c0(m + 1)
∫ t

b(τ ) dτ and c0 = const.

5.2. The case μ �= ν = 1

In this case equation (62) reduces to

ẍ =
Ax(1 + μ)ẋ2 +

(
At + Bx(1 − 2μ) + 2μAxB

A

)
ẋ + Bt(1 − μ) + μAtB

A
− μBxB

A

A(μ − 1)
. (68)

We assume A = A(t), B = B(t). Then, equation (68) becomes

ẍ = Ȧ

(μ − 1)A
ẋ +

μȦB

(μ − 1)A2
− Ḃ

A
, (69)

and, solving linear differential equations (similarly as in the case of proposition 5.1), we get
the following result.

Proposition 5.3. The equation

ẍ = a(t)ẋ + b(t) (70)

admits (for any functions a, b) a Lagrangian description with the Lagrangian of the form
L = μ

√
A(t)ẋ + B(t) where μ �= 1 and

A(t) = exp

(
(μ − 1)

∫ t

a(τ ) dτ

)
,

B(t) = −
(∫ t

b(τ )e− ∫ τ
a(y) dy dτ

)
exp

(
μ

∫ t

a(τ ) dτ

)
.

(71)

We point out that for b = 0 formulae (71) yield B(t) = exp
(
μ

∫ t
a(τ ) dτ

)
(the integration

constant has to be taken into account).

6. Multi-Lagrangian cases

The Lagrangian of proposition 5.3 can be rewritten as

L = e
∫ t

a(τ ) dτ μ

√
ẋe− ∫ t

a(τ ) dτ −
∫ t

b(τ ) e− ∫ τ
a(y) dy, (72)

and this form suggests the following generalization which can be easily verified by a simple
straightforward calculation.

Proposition 6.1. The equation

ẍ = a(t)ẋ + b(t) (73)

12
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admits (for any functions a, b) a Lagrangian description with the Lagrangian of the form

L = e
∫ t

a(τ ) dτF

(
ẋe− ∫ t

a(τ ) dτ −
∫ t

b(τ ) e− ∫ τ
a(y) dy

)
, (74)

where F is a function of one variable (such that F ′′ �= 0).

We remark that in the case of constant a, b (damped harmonic oscillator) many other
independent Lagrangians were obtained in [9].

In particular, we point out that the simple classical equation ẍ + kẋ = 0 has Lagrangians
of all forms considered in our paper, namely

L1 = 1

2
ekt ẋ2, L2 = 1

e2kt ẋ + ekt
, L3 = ẋμe(μ−1)kt ,

L4 = ẋ ln |ẋ| − kx, L5 = ν
√

ẋν + e−νkt .

(75)

However, any of these Lagrangians is equivalent (i.e. differs at most by a total derivative) to a
Lagrangian of the form (74), namely

LF = e−ktF (ẋekt + c0), (76)

with F(ξ) equal to 1
2ξ 2, ξ−1, ξμ, ξ ln |ξ | and ν

√
ξ , respectively. A one parameter family of

Lagrangians for the equation ẍ + ẋ = 0 was considered in [30]. All members of this family
are equivalent to particular cases of (76), as well.

Another multi-Lagrangian case is described by corollary 4.3, where we present a one-
parameter family of Lagrangians for the equation ẍ+kẋ2 = 0. What is more, the corresponding
Hamiltonian is proportional to the Lagrangian (for any n �= 0) and is time independent. Hence,
L is an integral of motion. This observation can be generalized as follows.

Proposition 6.2. Suppose that a Lagrangian L = L(qi, q̇i , t) is an invariant of motion
(i.e. dL/dt = 0). Then, for any (sufficiently smooth) function F : R → R, the Lagrangian
L̃ = F(L) yields the same equations of motion.

The proof is straightforward. We compute

∂L̃
∂qi

= dF

dL
∂L
∂qi

,
∂L̃
∂q̇i

= dF

dL
∂L
∂q̇i

,
d

dt

∂L̃
∂q̇i

= d2F

dL2

dL
dt

+
dF

dL
d

dt

∂L
∂q̇i

.

Therefore,

d

dt

∂L̃
∂q̇i

− ∂L̃
∂qi

=
(

d

dt

∂L
∂q̇i

− ∂L
∂qi

)
dF

dL
+

d2F

dL2

dL
dt

,

from which the proof follows immediately.
Taking into account proposition 6.2, we see that LF := F(ẋekt ) is a Lagrangian for the

equation ẍ + kẋ2 = 0 (for any smooth function F). Another Lagrangian (time independent)
for this equation was found by Sarlet: L = ẋ(1 − ln ẋ) exp(kx), see [31].

7. Conclusions

In this paper we succeeded to rederive all results of [1, 2] in a straightforward, simple
way. Actually, we found many other one-dimensional dissipative-looking systems possessing
a Lagrangian description. One-dimensional systems admitting the Lagrangian formulation
were discussed in numerous papers (see, e.g., [21, 23, 24, 31–39]); some of them devoted
mostly to the damped harmonic oscillator, e.g., [9, 19, 20, 40, 41]. Surprisingly enough, using
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quite elementary tools, we succeeded to find some number of one-dimensional Lagrangians
which seem to be overlooked in the existing literature (see, for instance, sections 3.3 and 4).
Many other cases are rederived in a simpler, direct way.

Lagrangian description for some considered systems is not unique; they may possess
several different, non-equivalent Lagrangians (the problem of the equivalence was discussed
in [42]). This is a general property of one-dimensional systems, compare, e.g., [9]. However,
the corresponding existence theorems do not provide methods for producing explicit examples.

The equations ẍ + kẋ = 0 and ẍ + kẋ2 = 0, usually considered as classical dissipative
equations (compare [13]), have infinite families of Lagrangians, see section 6. The first of
these equation has Lagrangians of all forms considered in our paper, see (75).

In our paper we considered exclusively one-dimensional systems. It would be interesting
to extend these results on higher dimensions.
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